If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30^2+b^2=78^2
We move all terms to the left:
30^2+b^2-(78^2)=0
We add all the numbers together, and all the variables
b^2-5184=0
a = 1; b = 0; c = -5184;
Δ = b2-4ac
Δ = 02-4·1·(-5184)
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-144}{2*1}=\frac{-144}{2} =-72 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+144}{2*1}=\frac{144}{2} =72 $
| 4/5k-(k+1/4)=1/20(k+1) | | 7x-86=103-2x | | |2x-1|=|x+7| | | b+7/2=6 | | g(6)=-3+4 | | -3x-7+2x+9=5 | | 6n+4=88 | | 7−x7=−2 | | 7=x/7=-2 | | 11=3r–4 | | 2a-19=21 | | 8=9m-4m+3 | | 45-3n=9 | | a^2+23^2=29^2 | | 3(b+18)=84 | | v/10+29=32 | | x+(-45)=17 | | 8(m-93)=32 | | 12x+7-5x=21 | | 11=2w-9 | | 568+10.99x=298+22.99x | | 16=j/3+14 | | 14^2+b^2=23^2 | | x/10=-101 | | 5^(x-3)=2 | | -6+10k=94 | | 16 = j3+ 14 | | 0-5x=24 | | 3x-2x+5=2(x+24) | | -4+4k=36 | | 2x^+3×+1=20 | | 6−6x=−24 |